Contest Problems
Philadelphia Classic, Fall 2014
Hosted by the Dining Philosophers
University of Pennsylvania

®
PR
~< 1
®

dining philosophers

UNIVERSITY OF PENNSYLVANIA OMPUTER SCIENCE CLUB

Rules and Information

This document includes 15 problems. Novice teams do problems 1-10; standard teams
do problems 6-15.

Any team which submits a correct solution for any of problems 1-5 will be assumed to
be a novice team. If you are not a novice team, please skip problems 1-5.

Problems 1-5 are easier than problems 6-10, which are easier than problems 11-15.

These problems are correspondingly labeled “Novice”, “Intermediate”, and “Advanced.”
Order does not otherwise relate to difficulty, except that problem 15 is the hardest.

You may use the Internet only for submitting your solutions, reading Javadocs, and
referring to any documents we link you to. You may not use the Internet for things like
StackOverflow, Google, or outside communication.

Do not modify any of the given methods or method headers in our stub files! They are
all specified in the desired format. You may add class fields, helper methods, etc as you
like, but modifying given parts will cause your code to fail in our testers.

There is no penalty for incorrect submissions. You will receive 1 point per problem
solved. A team’s number of incorrect submissions will be used only as a tiebreaker.

’ 13

Some problems use Java’s “long” type; if you are unfamiliar with them, they’re like an
“int”, but with a (much) bigger upper bound, and you have to add “L” to the end of an
explicit value assignment:

long myLong = 1000000000000L;
Otherwise, the “long” type functions just like the “int” type.

1. Novice Problem - Penguin Mathematics

There is a penguin named Clever Hans[1] that is reputed to know how to do basic
arithmetic with an abacus! A challenger will present Hans with two abaci (the plural form
of abacus), each of which represents one of two numbers to add together, and Hans will
move the beads on a third abacus to equal the sum of the two numbers.

As a reminder, each row of an abacus represents a digit of a number. The first row
represents the ones digit, and the second row represents the tens digit, for example.
The number of abacus beads shifted to the left hand side of the row is the value of the
digit in that spot. For example, if three (out of nine) beads were on the left hand side of
the third row (the hundreds row), that would mean the hundreds digit is 3.

For the sake of this problem, an abacus is represented as String of a series of nine
asterisks and a space, which is comma-delimited. All asterisks to the left of the space
represent the count at that digit of the number (the moved beads), and all asterisks to
the right of the space are unmoved beads. Asterisk-space combinations toward the
beginning correspond to “higher” digits than asterisk-space combinations toward the
end.

You will receive a semicolon-delimited String of two abaci as input. You should output
the abacus that Hans would output. Please do not include any extra leading zeros.

You may assume that all inputs are valid.

Sample Input: Parsed Input: | Sample Output:

*kkkk ****;*** *kkkkkk 5 + 3 (= 8) *kkkkkkk *

kkkkkkkkk kkkk kkkkk.kkkkkk kkkk 4 + 6 (= 10) * kkkkkkkk khkkkkkkkk

* kkkkkkkkh khhkkhkkhkhkkkk kkkkhkhkkkk .hkkkkk kxk 109 + 6 (= 1 15) * kkkkkkkk k kkhkkkkhkkkk kkkkhkk kkkk

[1] http://en.wikipedia.org/wiki/Clever_Hans

2. Novice Problem - Parental Penguins Poorly Protect Pre-Kindergarten Pupils

The penguins have decided that forming a day-care will be easier than trying to do the
whole stand around in the freezing cold all winter thing. In order to keep from losing any
chicks the organizers of the day-care paint numbers on each of them so that it’s easy to
tell which one is missing. Because of the large volume of chicks, periodically going
through and checking each number is a very tedious task. The penguins decide to
mitigate this by writing a program to determine which penguin is missing given a list of
all of the numbers the day-care organizers read off of the chicks.

The stub function will have two arguments, a list of integers representing the numbers of
the chicks and the total number of chicks. The output of the function is an integer
representing the number of the penguin not present, or -1 if the day-care has not lost
any. You can assume that there will be at least one penguin present and that penguin
indexing begins at 1.

Sample Input: Sample Output:
1).[7,1,5 ,4,3,6],7 2
2).05,3,4,1,2],5 -1
3).13,2,4], 4 1

3. Novice Problem - Phoney Numbers

To cut down on the amount of cross continent pilgrimages, the penguins have created a
simple telephone system spanning Antarctica. This has revolutionized penguin society
much in the same way that phones revolutionized human culture. The general opinion
among penguins is that phones just aren’t as personal as handwritten letters and that
the whole thing was a bad idea. Another consequence of this is that every penguin form
asks for a phone number for some reason. Since no one came up with a standard way
of formatting numbers, there are now a huge amount of phone numbers written down
that need to be turned into some standard format.

The PISO (Penguin International Organization for Standardization) has decreed that the
international standard format for phone numbers is (X) XX-XX, where X can be any digit
from 0 to 9. Note: There is a single space after the close parenthesis. Your job is to take
a string and return the phone number contained in it (if any) in standard format. The
formats that people have been using are as follows:

X-XX-XX
X XX-XX

(X)-XX-XX
(X) XX-XX

b~

The stub function will have a single input which is a string that will contain at most one
phone number in one of the specified formats. The phone number will not have any
extra whitespace inside it (other than the one space in formats 2 and 4) but could have
other characters surrounding it (possibly not whitespace!). You should return the phone
number contained in the string in standard format or return null if it wasn’t found.

Sample Input Sample Output
1-23-45 (1) 23-45
My phone number is (5)-44-27 (5) 44-27

4 32-56howdoitype (4) 32-56

4. Novice Problem - Not Very Russian Nesting Penguins

Our intrepid group of penguins are reaching that age where everyone is starting to build
nests in anticipation of hatching and raising chicks. To make the task of building a
bunch of nests less dull a group of penguins decide to work as a team in order to make
it more fun. Each penguin individually knows how fast they can build a nest in terms of
some number of nests built in some number of hours but they would like to know how
fast their combined work rate is. Since these penguins are versed in programming they
decide to write some code that will compute the total work rate in nests per hour.

The stub function will have two arguments, both of which are int arrays. The first array is
a list of the number of nests each penguin can build in some time period. The second
array specifies that time period for each penguin. Thus penguin with index 3 can build
<nests[3]> nests in <hours[3]> hours. Your method will return a double indicating how
fast the group of penguins can build nests in nests per hour. You can assume that the
arrays will always be the same size and that they will not have size 0.

Sample Input Sample Output
[3, 2], [2,1] 3.5
[1,2,3],[1, 2, 3] 3
[4,4,4,4],[2,4,2,1] 9

5. Novice Problem- Penguin Building

The penguins are learning to build bridges to see their friends in Madagascar. Despite
being able to build rockets, they are terrible at building bridges. They have trouble
building triangular pieces to make a strong bridge. Whenever they randomly pick 3
boards, the lengths never seem make a triangle. Your job is to help the penguins
determine if their 3 boards can make a triangle for their bridge.

The stub function will have three arguments, each one an int representing the length of
one of the boards. Your method should return true if the lengths can be assembled to
form a valid triangle, and false otherwise.

Sample Input Sample Output
1,2,3 false
3,4,5 true

3,9,7 true

6. Intermediate Problem - A Penguin Jumped Over the Moon

In an attempt to escape from the effects of global warming, the penguins are
assembling a rudimentary space program. At the current stage of development, they
are attempting to launch a “penguin-ified” rocket and then have a capsule return the
penguin safely to earth. Unfortunately, they have to keep changing their launch and
landing sites to adapt to the ever-changing Antarctic region. They know that the capsule
will land within a certain distance away from the launch site, determined by launch
conditions. They also are able to set up a rectangular site in which it is safe to land. The
penguins would like to know given their launch site, landing radius, and rectangular
landing zone if there is any possibility that the capsule will land in the safe zone.

The stub function will have 7 arguments. The first two are the x and y coordinates of the
launch site. The third is the radius within which the capsule will land. The fourth and fifth
are the x and y coordinates of the upper left hand corner of the rectangle and the sixth
and seventh are the width and height. You should output a boolean that is true if there is
a chance of a safe landing or false if there is no chance.

Note: If the landing circle is tangent to the safe area then there is a chance of landing
safely.

Sample Input: Sample Output:
1). 30, 40, 30, 0, 10, 40, 40 true
2). 10, 20, 10, 45, 20, 10, 10 false
3).0,10,5,0,6,6,5 true

7. Intermediate Problem - Penguin Information

Some people think Penguins are simple and uninteresting birds, but they couldn’t be
more wrong. Each penguin is born special and unique! Penguins have names, favorite
foods, weights, favorite musical artists, and, favorite poets.

We have too much interesting information about our penguin friends, but we need your
help organizing! Given a list of penguins and something to sort the penguins by, print

out the penguins in order.

We define a Penguin object for you in Penguininfo.java. A Penguin object has the

following methods:

Method Output Type

Output Description

getName() String

This is the name of the penguin.

getFavoriteFood() | String

This is the penguin’s favorite cuisine.

getWeight() double

This is the penguin’s weight in pounds.

getHeight() int

This is the penguin’s height in inches.

getMusicalArtist() String

This is the penguin’s favorite musical artist.

getPoet() String

This is the penguin’s favorite poet.

Input:

The method has the following parameters:
e List penguins - the list of Penguin objects to sort. Remember that
penguins are unique, so no two penguins will have the same information.
e String sort - the field to sort the penguins by. Sort will only have one of the

following values.

m Sort the penguins by favorite food in ascending alphabetical

o “FOOD”
order.
o “WEIGHT”

m Sort the penguins by weight in ascending numerical order.

o “HEIGHT”

m Sort the penguins by height in ascending numerical order.

o “MUSIC”

m Sort the penguins by favorite musical artist in ascending

alphabetical order.
o “POET”

m Sort the penguins by favorite poet in ascending alphabetical

order.

Output:

You will return a string representing the list of penguins in sorted order. Use the toString
method supplied to you to convert the penguins to strings. They should be separated by

spaces with no leading or trailing whitespace.

Sample Input:

Sample Output:

{Penguin(“Jack”,"Pizza”,50.43,40.32,”"Kanye West",”John
Keats”),
Penguin(“Peter”,”Sushi”,45.345,32.1234,”Jay-Z",”Sylvia
Plath”) }

String sort - “WEIGHT”

List<Penguin> penguins - Jack Peter
{Penguin(“Jack”,”"Pizza”,50.43,40.32,”"Kanye West”",”John

Keats”),

Penguin(“Peter”,”Sushi”,45.345,32.1234,”Jay-Z",”Sylvia

Plath”) }

String sort - “FOOD”

List<Penguin> penguins - Peter Jack

8. Intermediate Problem - Nest and Breakfast

Penguin Joe and his wife Penguinette Joelle have decided to open a small
“nest-n-breakfast”. After getting everything set up, they posted a calendar where the
other penguins could sign up for dates during which they wanted to stay. Much to their
surprise, the N and B was a huge hit, and they quickly became totally booked. They
tried to keep up with the demand, but sadly it turns out that they need time in between
bookings to clean the place; penguins are extremely messy house guests. Joe and
Joelle decide that they will just have to tell some of the people that they can’t honor their
reservations, but they still want to keep as much time booked as possible. They need
your help building a program that will decide which reservations they should keep.

The input to the stub function will consist of an array of integers that represents the
duration of each booked stay (in days) in chronological order. There is no need to
include any other information since each new reservation begins immediately after the
previous one ends. You should return the maximum number of days Joe and Joelle can
have guests while never having two stays back to back.

Sample Input Sample Output
51,5 10
10,4,5,9,1 19

1,5,3 5

9. Intermediate Problem - Penguin Concert Seating

Phish[1] is coming to town, and the penguins are going to see them in concert. The
concert venue is an isosceles triangular field, with the stage at the point between the
two sides of equal length. It's cold and rainy outside, so the penguins will be huddled
together tightly for warmth, and there will be a tent over the entire field to keep the rain
out.

Unfortunately, holding up the tent requires some pillars which block the view. After the
setup crew installs the tent, we need to figure out how many penguins can come see
the show. Fortunately, penguins huddle very tightly[2] - they fit 21 per square meter!

The pillars are line segments parallel to the base of the triangle. Their position is
represented by three coordinates (x1, x2, y), with the origin at the bottom-left corner of
the triangle. All pillars are contained entirely within the triangle, and there are no
“overlapping” pillars; any spot where the view is blocked by a pillar will have the view
blocked by only one pillar.

Given the dimensions of the triangular field (base and height) and a list containing pillar
coordinates, compute how many penguins will be able to see the show without having
their view blocked by a pillar. In other words, find the total area within the triangle such
that a straight line between the apex (stage) and that point will not intersect any pillars,
and then account for penguin density. Note that the solution should be rounded down to
an integer, since Phish would rather not have fractional penguins milling around their
show.

All dimensions and coordinates are in meters.

Sample Input: Sample Output:
10, 10, [4, 6, 5] 735
10, 5, [1, 9, 1] 336
10, 5,4, 5,4, 5, 8, 2] 105

[1]: http://en.wikipedia.org/wiki/Phish
[2]: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0020260

10. Intermediate Problem - Penguin by North Penguin

Our intrepid penguins have decided to set off on an expedition to explore the area
surrounding the South Pole. They have figured out that the best way to start exploring is
to start at the Pole, have each time pick a direction and set off in a straight line. The
director of penguin exploration (DPE) has sent out a list giving each penguin a direction
given in degrees but unfortunately the penguins are much more at ease with directions
given in ordinal form. That is instead of a 45° heading the penguins would rather hear
NE. In order to deal with this problem the DPE has contracted you to write a program
that will convert directions given in degree form into ordinal form. Since not all directions
can be converted into ordinal form the DPE will also provide a tolerance that the ordinal
form can be within.

The rules for determining the ordinal form of a direction are as follows:
1. All directions have a either a E or W as the last character unless it is simply N or
S
2. All directions are made of either E or W and either N or S
3. A character that is i characters away from the last one moves the total 45/2%i in
the direction of that direction’s degree number.
4. The total starts at the last character’s degree number (ie either 90 or 270).

The picture to the left should help clarify:

hittp:Nblog.weatherflow.comidegrees-of swind-direction-along-s outh-
carclina-onshora-vs-offtshon

The stub function will have two arguments. A
double representing the ordinal direction the
expedition is heading in and another double that
represents the the tolerance within which the MW w0 360 1o NN
degree representation of your ordinal
representation must fall within. You should
compute the shortest sequence that falls within
the tolerance.

N

z
=
299

Sample Input Sample Output W ;
22.5, 0.1 NNE 5
WSwW "
260, 5.0 WWSW
8/0 \‘DQ
182, 2.0 S ssw200 190 180 170 \bZSE

S

=1

11. Advanced Problem - Penguins versus Robots

The penguins are trying to get through a long valley guarded by evil robots! Each robot
has a detection range, and any penguin which walks within that range of a robot will
immediately be attacked. Luckily, the penguins are really good at hacking, so they can
spend time to deactivate the robots one by one. However, they don’t want to raise the
suspicions of the robot overmind by deactivating too many robots. Thus, help them
decide the least number of robots they need to deactivate so as to create a path for
them to slip through!

The valley is represented by a rectangle on the xy-plane with bottom-left corner (0, 0)
and top-right corner (valleyWidth, valleyHeight). The penguins start at the left end of
the valley (at x = 0) and are trying to get to the right end (at x = valleyWidth). The lines
from (0, 0) to (valleyWidth, 0) and from (0, valleyHeight) to (valleyWidth,
valleyHeight) are two high walls which cannot be crossed.

You are given:
e along valleyWidth
e along valleyHeight
Also, for each robot, you are given:
e along xPosition
e along yPosition
e along detectionRange
From this, calculate the minimum number of robots which need to be deactivated so as
to allow the penguins to slip through

Sample Input | Sample Output Explanation

204 1 There is one robot guarding the entire valley,

1 standing at (10, 2) and with detection range 2
1022 units, which needs to be removed to pass
204 0 There is a gap for the penguins to slip through,
1 SO no robot needs to be removed

1012

204 1 Only the third robot needs to be removed for a
3 gap to be created

1012

1112

1034

12. Advanced Problem - Penguin Procrastination

It turns out that penguins are even worse procrastinators than high school (and college)
students. They love 2048[1], and will waste countless hours playing the game.
Unfortunately, these penguins are not really that good at math (go figure, they’re too
busy playing to study). Thus, they sometimes will soldier on, even when it is clear they
will be unable to win the game. Your job is to help them (in a limited case) to determine
when a game is fruitless.

You will be given a 2-dimensional integer array sized 4x4, filled with numbers
representing the current state of a 2048 game (you can be guaranteed this is a valid
board). Your job is to determine whether, starting from this position, the Penguins could
win the game in 7 moves (i.e. 7 keystrokes) or fewer (ignoring the addition of other
tiles).

You should return true if a win is possible, false otherwise.

Sample Input

16 16 32 64
0 0 0 128
0 0 0 256
0 0 1024 512
Sample Output true
Explanation A possible winning move sequence is right, right, right,

down, down, down, left

Sample Input

0 0 128 64

Sample Output false

Explanation Not enough pieces on the board to get 2048

Sample Input
0 0 0 0
0 0 0 0
0 0 0 0
512 1024 512 0
Sample Output false
Explanation While there are enough pieces on the board to make
2048, you cannot align them properly without
additional tiles.

Sample Input

8 8 16 32

0 0 0 64

0 0 0 128

0 1024 512 256
Sample Output false
Explanation While it is possible to win this game, it will take more

than the allotted 7 moves

[1] http://gabrielecirulli.github.io/2048/

13. Advanced Problem - Penguin Iceberg Hopping

Iceberg hopping is a popular pastime amongst young and energetic penguins. There
are some icebergs floating in around in the water. However, the penguins play by
strange and unusual rules: each iceberg has a specific next iceberg that can be hopped
to, or else the hopping penguin loses. For example, the next iceberg from iceberg 2
might be iceberg 4, so any penguin who hops onto iceberg 2 must hop to iceberg 4
next. Note that each iceberg has only one “next iceberg”, but it can be possible that
many icebergs all point to one iceberg as their “next iceberg”.

A bunch of lazy penguins is getting tired of all the hopping. Each of them is currently
standing on some iceberg, and wants to hop some number of times. Help them find out
what iceberg each of them will end up on, so that they won’t have to do all the hopping
to find out.

Your task is to calculate the ending position for each penguin assuming they follow all
the rules. You are given:

e along[] nextlceberg, an array containing the next iceberg that should be hopped
to from each iceberg. In other words, a penguin should hop to iceberg
nextlceberg[i] from iceberg i

e along[] startingPositions, an array containing the starting iceberg of each
penguin.

e along[] numHops, an array containing the number of hops each penguin wants
to hop.

From this, return a long[] endingPositions, an array containing the ending position of
each penguin.

Sample Input | Sample Output | Explanation

33 [0, 1, 2] nextlceberg = {1,2,0}

120 startingPositions = {0,1,2}
012 numHops = {3,6,9}

369

Hopping 3 times from any iceberg in the given
configuration will bring you back to your starting
position.

45
1000
01233
31337

[1,0,0,0, 0]

nextlceberg = {1,0,0,0}
startingPositions = {0,1,2,3,3}
numHops ={3,1,3,3,7}

As an example, the sequence of icebergs taken
by the 5th penguin in 7 hops would be:
3->0->1->0->1->0->1->0, ending on 0.

14. Advanced Problem - Penguin Fish Catching

The penguins are playing a game with fishes. One penguin stands on a piece of ice,
represented by a straight line, while the other penguins start tossing fish to him.
However, their aim is really bad, so the fish don’t all land near the penguin catching
them. Any fish that the penguin misses and hits the ice flops into the sea and is lost
forever. To catch a fish, a penguin must be standing on exactly the landing position of
the fish at exactly the landing time of it. For example, if a fish has landing time 5 and
landing position 3, the penguin must be standing on position 3 exactly at time 5 to catch
the fish. Of course, the penguin may waddle slower than (but not faster than!) his
waddling speed if he wishes to, or even stop completely, if that will help him to catch
more fish.

Your job is to help the penguin catch as many fish as possible. You are given:
a long startingPosition

a long waddlingSpeed

a long[] landingTimes

a long[] landingPositions

From this, calculate the maximum number of fish it is possible for the penguin to catch.

For the sample input given below, the first number represents the starting position and
the second number represents the waddling speed (in feet per second). Then, the first
number of each Fish represents the landing time (in seconds after the game starts), and
the second number represents the landing position of the fish.

Sample Input | Sample Output | Explanation

51 2 startingPosition = 5

3 waddlingSpeed = 1

123 landingTimes = {1, 2, 3}
472 landingPositions = {4, 7, 2}

The penguin can catch the first and third fish, but
the second is too far away to be caught.

55 0 startingPosition =5

1 waddlingSpeed = 5

2 landingTimes = {2}

100 landingPositions = {100}

The fish is too far away to be caught.

15. Advanced Problem - Penguin sums

A group of mathematically inclined penguins are doing a programming contest, and they
need your help with the last problem. There are N penguins, labeled from 1 to N, and
each of them has a favorite number that is the largest integer which divides both N and
their own label (in other words, the g.c.d. of N and their label). Help the penguins find
the sum of all their favorite numbers. Since this may be very large, you will also be
given a long M, and your job is to output the remainder when this sum is divided by M.

You will be given:
e along N, indicating the number of penguins.
e along M, indicating the mod to be used.
From these, print out the sum of all the penguins’ favorite numbers mod M.

Sample Input Sample Output | Explanation

10 10000 27 142+1+42+5+2+1+2+1+10=27
27 (mod 10000) = 27

810 0 1+2+1+4+1+2+1+8=20
20 (mod 10) =0

